On-site Wastewater Training
For Tribal Environmental Programs

On-Site Pretreatment Systems

Mike Kizer
Oklahoma State University

Stroud, Oklahoma
October 21, 2009

Brought to you by EPA Region 6 with Cherokee Nation, Chickasaw Nation, Choctaw Nation, Eastern Pottawatomie Tribe, and OSU Cooperative Extension
What is an onsite wastewater treatment system?

1. Wastewater Source
2. Collection and Storage
3. Pretreatment components
4. Dispersal components and Final Treatment
Pretreatment Purposes

- Collection and conveyance of sewage
- Modification of sewage for final treatment
 - Settling undigestible solids
 - Fats, oils & grease separation
 - Anaerobic & aerobic digestion of solids
- Distribution of effluent to soil treatment area for final rennovation and return to the environment
Collection

• Piping from facility with cleanout
 – Blackwater
 – Graywater

• Holding tanks
Pipe materials

- Types
 - Ductile iron
 - ABS
 - High density polyethylene (HDP)
 - PVC
Pretreatment Components

- Septic tanks
- Aerobic treatment units
- Media filters
- Constructed wetlands
- Disinfection
Septic Tank

- Solids removal and storage
- Anaerobic digestion
- Watertightness is critical
Trash Tank

- Often used before ATUs
 - Integral with the ATU
 - Combined with a septic tank
- Removes the big stuff
Pump Tank or Surge/Flow Equalization Tank

Dosing Tank with Demand Controls

Flow Equalization Tank

Source

Septic tank

Pump tank or Surge/flow equalization tank

To remainder of treatment system

Tribal Onsite Wastewater Training
OSU-EPA
Final Treatment and Dispersal Components

- Trench and bed distribution
- Evapotranspiration beds
- Low pressure distribution
- Drip field
- Spray field
Distribution trench options for gravity systems

- Washed rock
- Chambers
- Polystyrene aggregate
- Large diameter pipe

Trenches must be on contour and level
Parallel distribution: trench and bed configurations
Sequential distribution

- Used on sloping sites
- Trenches placed on contour and as level as possible
- Effluent fully ponds first trench before flowing to the next
- Trench length can vary
- Ability to rest individual trenches
- Can add more trenches downslope
Serial distribution

- Used on sloping sites
- Trenches placed on contour and as level as possible
- Effluent flows through first trench and fully ponds before flowing to the next in a serpentine pattern.
- Blockage stops the flow to downstream trenches!
- Difficult to rest individual trenches as in sequential
Parallel, sequential and serial distribution

- Trenches should be distributed
- This means trenches may not be straight
- Maintain proper separation between trenches
Trenches should be level

- If a trench ponds, effluent will re-distribute on the basis of gravity
 - Within the trench
 - Across the system
Parallel distribution on a level site

- Each trench should be level within 1”
- All trenches in a system should be level within 3” across the site
 - Or, according to local regulation
- Aim for a higher standard
Sloping sites: contour loading
Contour loading

Contour lines

5 x 90’ laterals

Soil treatment area

Direction of ground water flow

Drainage

Tribal Onsite Wastewater Training
OSU-EPA
Contour loading

3 x 150’ laterals

Soil treatment area (drainfield)

Direction of ground water flow

Contour lines

Drainage

Tribal Onsite Wastewater Training
OSU-EPA
System Choices

• Basic System (“Box & Rocks”)
 – Adequate lot size
 • Separation distances OK
 • Replacement STA available
 – Moderately permeable soils
 – Moderate slope
 – No restricting layers
 – Deep water table

• Advanced Systems
 – “Problem” sites
 – Increased $$ & maintenance
ET Bed Types
Aerobic Treatment Unit System

- Trash tank
- Air pump
- Aeration
- Clarifier
- Sludge return pump
- Final treatment and dispersal

Tribal Onsite Wastewater Training
OSU-EPA
Aerobic Treatment Units

- Suspended Growth Unit
- Combination Suspended/Fixed Film Process
- Fixed Film Process
- Rotating Biological Contactor
- Adaptive Mechanical Aerator

Tribal Onsite Wastewater Training
OSU-EPA
Types of Disinfection Systems
(for advanced treatment effluent)

- Chlorination (tablet or liquid)
 - Strong oxidizing agent
 - Highly corrosive
 - Contact time and concentration is important

- Ultraviolet (UV) light
 - A special lamp creates UV light
 - UV light destroys organism DNA / cells
 - Clarity of wastewater is an important factor
 - Contact time is important
 - Flow rate through unit
Basic components of a external tube tablet chlorination system

- Feed tubes
- Housing
- Water inlet
- Ca(OCl)_2 tablets
- Water outlet
Spray Distribution System

Tribal Onsite Wastewater Training
OSU-EPA
Drip Field Layout
Anaerobic pretreatment
Drip Field Layout
Aerobic pretreatment

- From house
- Septic tank
- Advanced pretreatment
- Dosing tank
- Alternate return location
- Pressure regulator
- Filter
- Supply manifold
- Return manifold
- Emitters
- Flush / vacuum breaker valves

Tribal Onsite Wastewater Training
OSU-EPA
Drip Tubing Specifications

- Drip tubing approved by the manufacturer for use with wastewater.
- The tubing is generally ½ inch diameter with an emitter equally spaced in the tubing.
- Bioslime and root intrusion control is achieved by bactericides, herbicides and flushing.
Lagoon Treatment System

Source

Septic tank

Fence

Lining

Earthen berm

Anti-siphon vent

Lagoon

Overflow outlet

Fence

Not in OK

Tribal Onsite Wastewater Training
OSU-EPA
Lagoons

- Non-discharging/
 Total Retention
 - Preceded by a septic tank
 - Used as a pretreatment component
 - Polishing
 - Storage
 - Evaporation lagoon
 - Infiltration basin

- Discharging outfall

- These are high risk systems
 - Fencing to limit access
On-Site Treatment Systems

• Properly designed, installed & maintained pretreatment components do not eliminate the need for final treatment (soil treatment area)

• Improperly designed, installed & maintained pretreatment components will likely lead to failure of the soil treatment area
On-site Wastewater Training
For Tribal Environmental Programs

Acknowledgements

Planning Team – LaDonna McCowan-Ferrier, Mike Kizer, Jason Warren, Dewayne Laxton, Roxanne Weldon, Billy Hix, Jamie Blankenship, Bruce Chandler, Mike Smolen

Educational Materials provided by CIDWT (Consortium of Institutes for Decentralized Wastewater Treatment)

Support provided by EPA Region 6 and OSU Cooperative Extension